THE CHROMATIC NUMBER OF THE PRODUCT OF TWO 4-CHROMATIC GRAPHS IS 4

M. EL-ZAHAR and N. W. SAUER*

Received 23 February 1984 Revised 31 August 1984

For any graph G and number $n \ge 1$ two functions f, g from V(G) into $\{1, 2, ..., n\}$ are adjacent if for all edges (a, b) of G, $f(a) \ne g(b)$. The graph of all such functions is the colouring graph $\mathscr{C}_n(G)$ of G. We establish first that $\chi(G) = n + 1$ implies $\chi(\mathscr{C}_n(G)) = n$ iff $\chi(G \times H) = n + 1$ for all graphs H with $\chi(H) \ge n + 1$. Then we will prove that indeed for all 4-chromatic graphs G $\chi(\mathscr{C}_3(G)) = 3$ which establishes Hedetniemi's [3] conjecture for 4-chromatic graphs.

1. Introduction

The product of two graphs $G \times H$ has the vertex set $V(G) \times V(H)$ and edges all pairs $((a, b), (\bar{a}, \bar{b}))$ such that (a, \bar{a}) and (b, \bar{b}) are edges of G and H, respectively. Observe that if f is a proper colouring of G then the colouring g of $G \times H$ given by g(a, b) = f(a) is a proper colouring of $G \times H$. Hence $\chi(G \times H) \le \min (\chi(G), \chi(H))$.

Conjecture 1 (Hedetniemi [3]). For all G and H and for all $n \ge 0$, $\chi(G) > n$ and $\chi(H) > n$ implies $\chi(G \times H) > n$.

[2] contains some general information on this problem.

Let G be a graph without loops. We define for each positive integer n the n-colouring graph of G, denoted by $\mathscr{C}_n(G)$, as follows. The vertex set of $\mathscr{C}_n(G)$ is the set of all functions $f: V(G) \rightarrow \{1, ..., n\}$ and two such functions f, g are connected by an edge whenever for all edges $ab \in E(G)$, $f(a) \neq g(b)$. This definition allows $\mathscr{C}_n(G)$ to have loops at those vertices which are proper colourings of G. Therefore $\mathscr{C}_n(G)$ has no loops iff $\chi(G) > n$. There are many unanswered questions concerning those colouring graphs but the one closely related to conjecture 1 is to determine the chromatic number of $\mathscr{C}_n(G)$ when $\chi(G) > n$. It is easy to see that $\mathscr{C}_n(G)$, for any graph G, has chromatic number at least n. The constant maps form a complete subgraph of order n.

Conjecture 2. $\chi(G) > n$ implies that $\chi(\mathcal{C}_n(G)) = n$. We will show that Conjecture 1 and Conjecture 2 are equivalent and that Conjecture 2 holds for n=3.

^{*} This research was supported by NSERC grant A7213 AMS subject classification (1980): 05 C 15

2. The graph of colourings of a graph

Theorem 2.1. Let G be a connected (n+1)-chromatic graph. Then $\mathcal{C}_n(G)$ contains a unique complete subgraph of order n, namely the subgraph induced by the constant maps.

Proof. Let f_1, \ldots, f_n denote the vertices of a complete subgraph of $\mathcal{C}_n(G)$. Let H be a vertex-critical (n+1)-chromatic subgraph of G. We claim that for each $i=1,\ldots,n$ for each $x\in H$ there is a vertex y adjacent to x in H such that $f_i(x)==f_i(y)$. Assume not, then there are $x\in H$ and a colour, say f_1 , such that $f_1(x)\neq f_1(y)$ for each vertex y adjacent to x in H. Since H-x is n-chromatic there is a partition of the vertices of H-x into n independent subsets V_1,\ldots,V_n . We get a proper n-colouring f of H as follows:

$$f(x) = f_1(x)$$

$$f(y) = f_i(y) \text{ where } y \in V_i.$$

This contradiction proves our claim. From this we deduce that for each vertex $x \in H$, $f_i(x) \neq f_j(x)$ whenever $i \neq j$. This implies that $f_i(x) = f_i(y)$ for each i and for each pair of adjacent vertices $x, y \in H$.

Therefore the restrictions of f_1, \ldots, f_n to H are the constant maps. By the connectedness of G each f_i must be constant on G.

Corollary 2.2. (D. Duffus, B. Sands, and R. E. Woodrow [2]). Let G, H be two connected (n+1)-chromatic graphs both containing a complete subgraph of order n. Then $G \times H$ is (n+1)-chromatic.

Proof. Denote by $x_1, ..., x_n$ and by $y_1, ..., y_n$ the vertices of the complete subgraphs of G and H respectively. Suppose that $f: G \times H \rightarrow \{1, ..., n\}$ is a proper n-colouring. Since $\mathcal{C}_n(G)$ has no loops the induced colourings $f_{y_1}, ..., f_{y_n}$ of G are all distinct and form a complete subgraph of order n. By the previous theorem, these induced colourings are the constant maps. In other words for each fixed i, $f(x, y_i)$ is independent of x. In a similar way $f(x_i, y)$ is independent of y for fixed y. However, this is an obvious contradiction.

Corollary 2.3. (Burr, Erdős and Lovász [1]) Let G be an (n+1)-chromatic graph in which each vertex is contained in a complete subgraph of order n. Then $\chi(G \times H) = n+1$ for each (n+1)-chromatic graph H.

Proof. Suppose that f is a proper n-colouring of $G \times H$. As we noticed earlier, the map $\alpha \colon G \to \mathscr{C}_n(H)$ defined by $\alpha(x) = f_x$ is edge-preserving. The image under f of a complete subgraph of G must be a complete subgraph of $\mathscr{C}_n(H)$ of the same order since $\mathscr{C}_n(H)$ has no loops. This implies that α maps G onto the complete subgraph of the constant maps of H. This is a contradiction since G is (n+1)-chromatic.

Corollary 2.4. (Hedetniemi [3]) If $\chi(G) \ge 3$ and G is connected, then $\mathscr{C}_2(G)$ contains exactly one edge, hence $\chi(\mathscr{C}_2(G)) = 2$. So $\chi(G \times H) = 3$ for any two 3-chromatic graphs G and H.

3. The 3-colouring graph of an odd circuit

In this section, C_n will denote a circuit on n vertices v_1, \ldots, v_n with edges $v_i v_{i+1}$ where $v_{n+1} = v_1$. To obtain our main result we are interested in the case where n is odd but include the even case for completeness.

Let $f \in \mathcal{C}_3(C_n)$. A vertex $v_i \in C_n$ is defined to be a fixed vertex for f, or fixed by f, if its two neighbours get different colours, that is when $f(v_{i-1}) \neq f(v_{i+1})$. The reason for the term fixed is that if v_i is fixed by f then $g(v_i)$ has the same value for all maps $g \in \mathcal{C}_3(C_n)$ adjacent to f. We say that f has an odd parity, or simply f is an odd colouring, when it has an odd number of fixed points. Similarly, colourings with even parity are defined.

Lemma 3.1. Let $f \in \mathcal{C}_3(C_n)$. Then the number of triples of consecutive vertices v_{i-1} , v_i , v_{i+1} which get three different colours by f has the same parity as f itself.

Proof. Clearly we can assume that f is not a constant map. Partition C_n into monochromatic intervals of consecutive vertices. The contribution to the number of fixed vertices from a monochromatic interval $\{v_i, \ldots, v_{i+k}\}$ $(k \ge 1)$ is two since the only fixed vertices in this interval are the endvertices v_i, v_{i+k} . An interval of a single vertex $\{v_i\}$ contributes one if and only if v_{i-1}, v_i, v_{i+1} get three different colours.

Lemma 3.2. A proper colouring of an odd (resp. even) circuit with at most three colours is odd (resp. even).

Proof. We use induction on the length of the circuit. A proper colouring of a triangle has three fixed vertices. A proper colouring of a quadrilateral has no fixed vertices or two fixed ones depending on whether it uses two or three colours. Let f be a proper colouring of C_n ($n \ge 5$). The statement is true if each vertex is fixed by f. So, without loss of generality, we assume that v_n is not fixed by f and let $f(v_{n-1})=f(v_1)=1$ and $f(v_n)=2$. If we remove v_n and identify v_{n-1} and v_1 we get an (n-2)-circuit which is still properly coloured by $v_i \rightarrow f(v_i)$. It is easy to check that the number of fixed vertices decreases by two if $f(v_2)=f(v_{n-2})=3$ and does not change in all other cases. Therefore, the parity of f is the same as the parity of the resulting proper colouring of C_{n-2} . This completes the proof of the induction step and the lemma.

Lemma 3.3. Let f_1 and f_2 be connected by an edge of $\mathcal{C}_3(C_n)$. Then f_1 , f_2 have the same parity.

Proof. The graph $C_n \times K_2$ consists of a 2n-circuit when n is odd and two n-circuits when n is even. Denote by a_1, a_2 the vertices of K_2 and define a proper colouring f of $C_n \times K_2$ by $f(v_i, a_j) = f_j(v_i)$, $i = 1, \ldots, n$; j = 1, 2. A vertex (v_i, a_j) is fixed by f if and only if v_i is fixed by $f_{j'}$ where $j' \in \{1, 2\} \setminus \{j\}$. This shows that the sum of the number of vertices fixed by f_1 and f_2 is equal to the number of vertices fixed by f. By lemma 3.2, this is even since f is proper.

A consequence of Lemma 3.3 is that the parity is the same for all vertices of a component of $\mathcal{C}_3(C_n)$. Therefore we can speak of the parity of a component of $\mathcal{C}_3(C_n)$.

Proposition 3.4. Let C_n with vertices $v_1, v_2, ..., v_n$ and C_m with vertices $u_1, u_2, ..., u_m$ be two odd circuits. Then for any proper 3-colouring f of $C_n \times C_m$ the parity of the induced colourings f_{v_i} is different from the parity of f_{u_i} .

Proof. Denote by M_i , N_j the number of vertices fixed respectively by the induced colourings f_{v_i} , f_{u_j} $(1 \le i \le n, 1 \le j \le m)$. By Lemma 3.3, all the M_i 's are of the same parity and so are the N_j 's. To show that the M_i 's and the N_j 's have different parities, it suffices to prove that the number

$$nm - \sum_{i=1}^{n} M_i - \sum_{j=1}^{m} N_j$$

is even. To this end we investigate how the quadrilaterals in $C_n \times C_m$ are coloured by f. Let Q_{ij} denote the quadrilateral with vertices (v_{i-1}, u_j) , (v_i, u_{j+1}) , (v_{i+1}, u_j) and (v_i, u_{j-1}) . Since f uses only three colours, there are exactly three possible cases:

(i)
$$f(v_{i-1}, u_j) \neq f(v_{i+1}, u_j)$$
,

(ii)
$$f(v_i, u_{j-1}) \neq f(v_i, u_{j+1}),$$

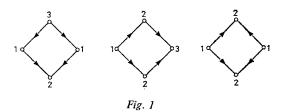
(iii)
$$f(v_{i-1}, u_i) = f(v_{i+1}, u_i)$$
 and $f(v_i, u_{j-1}) = f(v_i, u_{j+1})$.

These cases correspond respectively to: vertex v_i is fixed by colour f_{u_j} , vertex u_j is fixed by colour f_{v_i} and neither is fixed. Here it is not possible that v_i , u_j are both

fixed respectively by f_{u_j} , f_{v_i} . Therefore the number $nm - \sum_{i=1}^n M_i - \sum_{j=1}^m N_j$ is equal

to the number of the quadrilaterals Q_{ij} such that (iii) holds. Observe that (iii) holds if and only if the vertices of Q_{ij} are coloured by two colours only. We finish the proof by showing that the number of 2-coloured quadrilaterals is even. Direct the edges of $C_n \times C_m$ such that arrows go from colours 1 to 2, 2 to 3 and from 3 to 1. It is not difficult to check that opposite edges in Q_{ij} have the same "sense" whenever it is coloured by three colours or, equivalently, when either (i) or (ii) holds. But if Q_{ij} gets only two colours, that is (iii) holds, then its opposite edges have different "senses". See Figure 1.

Consider the sequence of quadrilaterals $Q_{11}, Q_{22}, \ldots, Q_{ij}, Q_{i+1, j+1}, \ldots, Q_{11}$. Any two consecutive quadrilaterals in this sequence have an edge in common. The number of 2-coloured quadrilaterals in this sequence is even since it equals the number of reversals in the "sense" of the common edge. The set of all quadrilaterals can be partitionned into k disjoint such sequences where k=g.c.d. (m,n). This shows that the total number of 2-coloured quadrilaterials is even as required.



4. The 3-colouring graph of a 4-chromatic graph

In this section we prove our main result that $\mathscr{C}_3(G)$ is 3-chromatic for all 4-chromatic graphs G. In order to prove this, we consider the restriction of colourings $f \in \mathscr{C}_3(G)$ to odd circuits of G. We were not able to find an example of a 4-chromatic graph G and a colouring $f \in \mathscr{C}_3(G)$ whose restriction to each odd circuit of G has an odd parity. It is likely that such a colouring cannot exist. However, the following proposition shows that if it exists, then it is an isolated vertex of $\mathscr{C}_3(G)$.

Proposition 4.1. Let G be a 4-chromatic graph. Suppose there is a colouring $f \in \mathcal{C}_3(G)$ whose restriction to each odd circuit in G has an odd parity. Then f is an isolated vertex of $\mathcal{C}_3(G)$.

Proof. Assume fg is an edge of $\mathcal{C}_3(G)$. Define

$$X = \{x \in V(G): \exists y \in V(G) \text{ with } xy \in E(G) \text{ and } f(x) = f(y)\}.$$

We claim that the induced subgraph G(X) has chromatic number at least three. Obviously $\chi(G(X)) \ge 2$. Suppose G(X) is 2-chromatic and let $X = X_1 \cup X_2$ be a partition into two colour classes. We get a proper 3-colouring h of G defined by

$$h(v) = \begin{cases} f(v) & \text{for } v \in V(G) - X_1 \\ g(v) & \text{for } v \in X_1 \end{cases}$$

which is a contradiction. Therefore $\chi(G(X)) \ge 3$ and G(X) contains an odd circuit which we denote by C. By Lemma 3.1 there is a consecutive triple of vertices v_1, v_2, v_3 on C with $\{f(v_1), f(v_2), f(v_3)\} = \{1, 2, 3\}$, say $f(v_i) = i$. This implies that $g(v_2) = 2$. By the definition of X, there is a vertex $u \in G$ adjacent to v_2 such that $f(u) = f(v_2) = 2$. Therefore $f(u) = g(v_2)$ which is a contradiction.

Theorem 4.2. Let C_n be an odd circuit. Then each component of $\mathscr{C}_3(C_n)$ with even parity is at most 3-chromatic.

Proof. Let T be an even-parity component of $\mathscr{C}_3(C_n)$ and assume that H is a connected 4-chromatic subgraph of T. Define a 3-colouring φ of the graph $C_n \times H$ by $\varphi(v,h)=h(v)$. φ is a proper colouring of $C_n \times H$ and for each $h \in H$ the induced colouring φ_n is the colouring h itself. By Proposition 3.4 each induced colouring φ_v ($v \in C_n$) must have odd parity on each odd circuit of H. Moreover, two such induced colouring φ_v , $\varphi_{v'}$ are adjacent in $\mathscr{C}_3(H)$ whenever v, v' are adjacent in C. This contradicts Proposition 4.1.

Theorem 4.3. $\mathcal{C}_3(G)$ is 3-chromatic for each 4-chromatic graph G.

Proof. Let H be a connected 4-chromatic subgraph of $\mathscr{C}_3(G)$ and $h_1 \in H$. From Proposition 4.1, there must exist an odd circuit C in G such that the restriction of h_1 to C has an even parity. Define a map $\alpha \colon H \to \mathscr{C}_3(C)$ by mapping each colouring $h \in H$ to its restriction to C. It is clear that α is edge-preserving. Therefore α maps H into a component T of $\mathscr{C}_3(C)$ with even parity. This component has no loops since it contains no proper colouring of C. Therefore $\chi(H) \leq \chi(T)$, in contradiction to Theorem 4.2.

Suppose G_1 , G_2 are connected 4-chromatic graphs. Let C_i be any two odd circuits in G_i (i=1,2). Denote by H the subgraph $(G_1 \times C_2) \cup (C_1 \times G_2)$ of $G_1 \times G_2$. H is 4-chromatic. To prove this suppose that f is a proper 3-colouring of H. As in the proof of Theorem 4.3 we get two edge preserving maps $\alpha: G_1 \rightarrow \mathscr{C}_3(C_2)$ and $\beta: G_2 \rightarrow \mathscr{C}_3(C_1)$. The image of one of these maps must lie in an even-parity component of the corresponding colouring graph which is a contradiction. This shows that even if G_1 , G_2 were critical, $G_1 \times G_2$ is far from being critical. In fact any one of its vertices can be removed and still we have a 4-chromatic graph. If one expects this to be true in general, then one has the following conjecture.

Conjecture 3. Let G_1 , G_2 be connected n-chromatic graphs. For i=1, 2 let H_i be an (n-1)-chromatic subgraph of G_i . Then the subgraph $(G_1 \times H_2) \cup (H_1 \times G_2)$ of $G_1 \times G_2$ is n-chromatic.

A feature of the proof of Corollary 2.2 is that this conjecture is true when each H_i is the complete graph K_{n-1} .

References

S. A. Burr, P. Erdős and L. Lovász, On graphs of Ramsey type, Ars Comb. 1 (1976), 167—190.
D. Duffus, B. Sands and R. E. Woodrow, On the Chromatic Number of the Product of Graphs, Journal of Graph Theory, to appear.

[3] S. T. Hedetniem, Homomorphisms of graphs and automata, Univ. of Michigan Technical Report 03105-44-T, 1966.

Mohamed El-Zahar, Norbert Sauer

Department of Mathematics and Statistics University of Calgary Calgary, Alberta T2N 1N4, Canada